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A well-designed structure must possess sufficient strength to sustain a 

given system of applied forces without rupturing or crushing of the material and 

at the same time it must be sufficiently stable tc  *esist these forces without 

excessive alteration in the geometric form in which it has been designed.   It is 

this latter problem with which this paper is concerned.   The purpose is to present 

a visual representation of the instability modes for a wide range of practical 

bodies.   However, the paper presents not only illustrations of the deformed 

shapes but also outlines some pertinent aspects of our knowledge, both theoretical 

and experimental of these behavior patterns. 

The first studies in the field of elastic1 stability were made by Leonard 

Euler in 1744.   The problem with which he was concerned was the behavior of a 

column under direct load.   The analysis which he made was concerned with a 

long column and the result he derived still applies to this case.   This classic 

computation shows that the critical load for a long column, with pinned ends, in 

which the axial force is constrained to always act in the direction of the column 

before buckling is given by 

P      *  TT2EI cr 
L2 

where E    =  the elastic modulus of the column material 

I    =  the second moment of the cross sectional area 

L   s  the length of column between pin centers 

It is important to remark in connection with this problem that when the conditions 

at the end, or the constraint on the force, or both are changed the critical load 

is altered. 

For various combinations of load, load direction and end conditions 

corresponding critical loads are given in Table 1. 

In all cases it is apparent that the load carrying capability is not influ- 

enced by the specific strength of the material.   The modulus is the only material 

property of significance.   Thus, a long column of high tensile steel has the same 

buckling load as a long column of low tensile steel. 

In reality columns are not always long, perfect in form or end condition, 

indeed, the true situation is the antithesis of this. Thus, the practical engineer 
becomes confronted with significant variations from the conditions of applicability 



Table I—Critical Load for a Column With Various End Conditions 
and Load Application Through a Fixed Point 

cr        L2 

imr/7-7 

End Condition 

One End Built-in Other End Free 

One End Built-in Other End Pinned 

Both Ends Built-in 

Fixed 
Point 
Ratio 
(dA) 

Restraint 
Coefficient 

C 

00 0.25 

10 0.272 

5 0.298 

2 0.417 

1.5 0.531 

1 1 

0.6 1.76 

0.4 1.91 

0.2 2.00 

0 2.05 

0 4.00 



of Euler's theory in all respects.   Geometric variations about the mean, 

eccentricity of load, and stresses outside the confines of Hooke's law.   Despite 

significant contributions to the theory during the 19th eenfury it was not until 

von Karman rationalized the situation by a logical extension of the Euler theory 

that a satisfactory theory of Euler buckling existed.   According to this study the 

average experimental value of critical buckling stress is about 93 per cent of the 

theoretical load level. 

The Karman-Enge a ser law is very slightly different to that of Euler.   It 

is in fact h. I 
p   » c.-—hi— 

L2 

where       C   =  the restraint coefficient 

and E   ■  the so-called reduced modulus which lies between E   (the r L 
tangent modulus) and E (Young's modulus) and depends upon the cross 

section shape. 

For all practical purposes, however, it will usually suffice to make the 

computation on the basta that 

ir\l 

p„ ■ c." cr        *     L2 

As remarked earlier, it is impossible to obtain a strut which is perfect 

in form cr to load it without obtaining an eccentricity. 

Thus, even today, empiricism plays an important part in the prediction of 

column behavior and the literature contains many references to empirical and 

semi empirical laws for column benavior.   Two of the most common of these are 

Rankin's formula and the Johnson parabolic formula. 

The variations from ideal form mean, of course, that a strut will bow 

immediately upon loading and the Euler stress is therefore not sharply defined, 

although as it is approached the deflection increases with great rapidity. 

R. V. Southwell has demonstrated that the equation 

P„ .   -4r- ■* • s constant 
E       P 

is a sufficiently accurate description of the load displacement relationship. 



In this formula 

P£ 
s Euler load 

P    s actual load 

S     - a deflection (for sensitivity measured at 

point of maximum displacement). 

Hence, by plotting S against    -j- one obtains a straight line, the slope 

of which is  P£  and the intercept with the appropriate axis is the initial eccen- 
tricity. 

The maximum stress cr-        produced in a ball-ended strut loaded at max 
both ends with the same eccentricity e, measured from a principal axis, XX, 

is given by the well-known secant formula 

cr        = or I 1 ♦   e ymax max \        5    sec 
^ r *■ K) 

1/2 

where cr   = average stress 

E.    = tangent modulus 

y       * distance of extreme fiber from XX axis max 
and r       -the appropriate radius of gyration 

The type of overall failure, termed Euler column failure, depicted in 

Figs. 1 and 2 is, of course, not the only kind of failure which can be experienced 

with columns, particularly when their cross sections are of open form. 

The photographs of Figs. 3(a-c) illustrate a different mode of instability 

for open section struts.     The type of instability herein demonstrated is termed 

local instability.   In members with flat sides, local instability is defined as 

that mode of distortion in which the meets of adjacent sides remain stationary. 

Thus, the sides buckle, as plates elastically supported along their edges, with 

a half wavelength approximately equal to the distance apart of the free edges. 

This type of instability is very clearly shown in the pictures already referenced. 

In general, buckling is not restricted to the free flanges, the web of the 

section can likewise buckle.   This is clearly seen in Figs. 4(a/ü). 

Analysis is in fair agreement with observed behavior for Z, U and I 

sections.   In practice, engineers tend to stabilize the free flanges by the 

addition of narrow lip flanges whose width is restricted to some five to ten 

times the thickness of the material. 



Fig. 1— Typical Euler Buckling of a Long Column With Both Ends Pinned. 



Fig. 2—Typical Euler Buckling of a Long Column With Both Ends Built-in. 
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Fig. 4(a)--U-Shaped Strut. 

Fig. 4--Local Instability of Thin-Walled Open Section Struts With Buckled Web Section. 



Fig. 4(b)--Z-Shaped Strut. 
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Buckling of this kind does not imply failure.   Columns will continue to 

carry load after they are unstable but, of course, they lose stiffness. 

In all cases the critical stress can be expressed by an equation of the 
type 

^^ = KE cr (Ö 
where       K    =   the local buckling stress coefficient 

t     =   the thickness of the 'sheet* 

h    *   the length dimension 

As the stress on any column member rises, the cross section experi- 

ences distortions which may be local or extend over the length of the member, 

as we have already shown.   Such distortion of the section causes a shearing 

stress to develop; a shearing which is proportional to the magnitude of the 

applied end load and the slope of the deflective region.   This shearing produces 

forces on open sections which may well cause rotation; particularly, if the 

torsional stiffness to the section is low, as it will be when the element is thin- 

walled.   The section shown in the test machine in Fig. 5    is an L shaped 

section, in which the leg is wide in relation to its thickness, and in relation to 

the length of the member.   We see (Fig. 5 ) that it does not bow, but rotates. 

A torsional failing mode was induced as a consequence of the reaction to the 

axial compressive force.   Nearly all open sections may be subject to this mode 

of instability.   Very little specific information is available and few experimental 

checks of the theory have been made. 

In general, a thin-walled open section strut., under a central load, will 

buckle in a mode involving flexure about the principal axis and twist about the 

flexural axis.   However, if the shear center coincides with the centroid, the 

mode involving only twist about the flexural axis occurs.   This is the pure 

torsional instability mode.   The coincidence of the two points is possible only 

in sections with double or point symmetry.   In unsymmetrical sections, it is 

often found that a combined flexure cum-torsion mode gives considerably lower 

failing stress than either of those corresponding to the pure component modes 

The test sequence shown demonstrates this point, Figs. 5,6.   The second specimen, 

the longer L, buckles in a torsion flexure mode.   When the length of side is 

reduced to a half, the mode becomes more predominantly the Euler column type , 

as in Fig. 6(c).   The critical load for the two shapes are identical.   The 

11 



Fig. 5--Pure Torsionai Failing Mode of Thin-Walled L-Shaped Strut. 
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Fig. 6(c)--Predominate Euler Failure Caused by Reducing 
the Width of Flanges. 
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efficiencies are in the ratio of two to one.  If we reduced the column length then 

we could arrive at the situation in which the reduced cross section would have 

much higher load carrying capability than its larger counterpart.   Just as in the 

case of pure flexure, the critical load to produce instability, is severely 

dependent upon the nature of any end constraint to which the member is subjected. 

Boundary conditions always play an important role in instability problems.   The 

pure torsional instability mode can be associated with a stress    o~~~ such that 

TT2 

GJ + C.   ^V ET 
^    - L2 

T \ 

where       G   - the shear modulus 

£   * Young's modulus 

Ip - the polar moment of inertia with reference to an axis through 

the shear center 

"   - the total warping constant 

J    = the torsion constant for the section 

As with other problems of struts the constant, C, depends upon the conditions 

of end fixity  — for the case when the ends are restrained against twist but 

are free to warp C = 1, when completely built-in C - 4. 

For arbitrary cross sections the buckling stress o- may be found from 

the largest root in the following cubic in   -zz . 

(>-3('-3('-^-('-'-)(fi>^)(i)2-°' 
}2 

P 

In this equation 
o- ,  p-    * the Euler stresses for flexure about principal axes 

x     y 

X, Y "the coordinates of the shear center with respect to the 

principal axes 

r * the polar radius of gyration with respect to the axis 
P 

through the shear center 
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The conditions of applicability of the equation are that the values of 

a- » er-   and   «~    must correspond to the appropriate boundary conditions. 

For the case when the member is torsion restrained but free to warp <r* , &~t 
*     y 

are the values for a ball ended strut and °~T   has a constant   C ■ 1.0.   In the 

built-in case C becomes 4 and the Euler values are likewise those for the 

encastre strut. 

The initial buckling of flat plates in compression is a subject which has 

received considerable attention both from experimental and theoretical viewpoints. 

The classic literature contains many references to such behavior.   It is seen 

from Fig. 7 that such plates buckle in waveforms which are essentially 
sinusoidal. 

The critical buckling stress is given by 

% ■»(£)2 

Where K  is the buckling stress coefficient whose value depends \*pon 

the plate dimensions, the boundary conditions and the Poisson ratio for the 

material 

t = the plate thickness 

b = the plate dimension normal to load direction 

E = Young's modulus of the material 

Flat plates, like plate columns, will continue to carry load after 

buckling has occurred.   The maximum strength under these conditions is a 

subject of interest.   Analytical studies show that load values under these 

conditions are predictable with high accuracy. 

The various modes of buckling associated with column members, 

flexural, local, torsional and flexural torsional instability have been demon- 

strated and discussed.   Plate buckling in compression has also been considered. 

In modern aircraft, however, we are rarely concerned with simple struts and 

plates.   Generally, structures are much more complex, semimonocoques. 

Semimonocoque or stressed skin structures, are those which rely upon the 

covering to resist and transmit shearing forces and part of the longitudinal 

forces.   These structures are composed of the skin, or external covering 

together with longitudinal and transverse members; termed stringers and ribs, 

or frames, respectively.   There are two design criterion to be chosen from. 

16 



Fig. 7--Sinusoidal Buckling of a Flat Plate Subjected to 
Uniform Axial Compression. 
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Under certain circumstances it may be desirable that there will be no wrinkling 

or buckling, particularly of the surfaces, before a given load is carried by the 

structure.   In other cases, total failure is the important question.   Four 

categories of instability are normally recognized.   Buckling of the stringers 

between adjacent frames in a manner analogous to column behavior; local 

instability in a manner similar to that already depicted: general instability — 

a type of buckling in which several stringers, several frames, and the covering, 

are simultaneously involved; buckling of the skins alone.    Such buckling may be 

due to shear or, of course, it may be wrinkling.   The instability mode known as 

wrinkling, is that in which the plate buckles as a strut elastically supported by 

the stringers. 

Realistic structures for aeronautical application are, of course, never 

flat sided.   Thus, in addition to the complexities which arise from the assemblage 

of plates, frames, and stringers there are additional difficulties due to curvature. 

The literature contains guides to the analysis of structures fabricated as defined 

but caution must always be exercised in their application.   One most important 

difficulty occurs in a cylinder subjected to bending, e.g., a fuselage.   The 

stringers may fail by an inward motion or by an outward motion.   The particular 

mode is dependent upon the curvature, and the stress levels are widely different. 

The variation is due to the fact that in the one case there is an elastic foundation 

to be considered in the other there is not. 

It must be pointed out, too, that the critical stresses for shells with 

stiffeners on the inside are different to those for shells with the same stiffeners 

on the outside. 

These subjects 3-e very complex and a detailed treatment is not feasible 

here. 

Semimonocoque structures are rarely monolithic.   Today's advanced 

technologies of machine tool control and metal-to-metal bonding have certainly 

made structures of a nearly monolithic type possible.   Nevertheless, we still 

tend to fasten the many components together by rivets or spot welds.   Plate 

buckling between such attachment points is termed interrivet buckling and is 

shown in Tig. 8 for a flat plate under axial compression. 

The critical stress in such regions is normally computed from a column 

type formula in which the end fixity coefficient is given a value of 3.0.   This 

seems fairly representative of the situation when snap head rivets are used. 

18 
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Fig. 8—Interrivet Buckling of a Flat Sheet Stringer Panel 
Loaded in Axial Compression. 
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Thus, a-.      3n jV 
1 2 12L 

Where E.    =  tangent modulus at stress level «—, 

L     s   rivet pitch 

t      =   plate thickness 

It is important in the app] ication of this formula to realize that local 

instability of the members to which the skin is attached must not occur at half 

wavelength comparable to the rivet pitch and that the plate may already be 

buckled at stress lower than   a-. . 
l 

The buckling of the strut between stringers has a detrimental effect on 

panel strength.   First, it reduces the effective width of the sheet.   Second, it 

reduces the support provided for the frames or stiffeners.   This can often induce 

local stiffener failure.   When this type of instability occurs, failure usually 

follows closely after the initial buckle. 

Plate structures are subject to instabilities not only under compressive 

loads but also under shearing actions.   The buckling stress under shear is given 

by an equation of the type 

Tb  =KE(t/b)2 

in which the value of K is dependent upon the panel dimensions and the conditions 

of edge support,   t is the thickness oi the plate and b its minor dimension. 

Curvature increases the critical stress levels and the formula developed for such 

cases is not substantially different to that given above but the value K now becomes 

dependent upon the ratio of b  / Rt, where R is the radius of curvature, as well 

as the other parameters. 

One important case of instability under shearing forces is found in the 

webs of beams.   The beam shown in Figs. 9c-d is representative of this class of 

problem.   The beam has two substantial flanges and a thin web with stiffeners. 

It is typical of many used in the horizontal and vertical stabilizers of aircraft.  In 

the analysis of such beams the designer is faced with several problems which, 

20 
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Fig. 9(a)--Beam Before Web Buckling. 

Fig. 9(b)—Beam After Web Buckling. 

Mg. 9--Development of Diagonal Tension Field in a Thin-Web Beam. 
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Fig. 9(c)— Close-Up View of Web Buckle Without Stiffeners. 

Fig. 9(d)—Close-Up View of Web Buckles Broken Up 
by Web Stiffeners. 



until recently at any rate, were not present in civil engineering structural design. 

In general applications, shear webs are made so thick that buckling will not take 

place before the design load is reached.   Buckling is then considered failure. 

Since initial buckling is certainly not the sign of imminent collapse, aircraft 

engineers must, in the interest of efficiency, raise the question of how much 

beyond this point can they go with certainty.   They are concerned with a very 

thin web.   An element at the center can, for the purposes of the argument, be 

chosen with sides of 45 degrees to the direction of shear.   This element will be 

loaded then by equal normal stresses on its faces.   Two will be compressive and 

two tensile.   It is this compressive force which causes the plate to buckle   --to 

buckle in deep folds which are normal to the force.   The shearing force is reacted 

by the tensile stresses which tend to fold the flanges together and to compress the 

stiffeners.   This is the so-called tension field beam or Wagner beam,   if the 
stiffening posts were not attached to the webs, then their load would be the vertical 

component of the tension field load corrected proportion between the stiffeners 

present.   In practice they are usually attached, and these simple considerations 

no longer apply.   To the tension field must be added the load which results from 

the fact that the stiffeners, where attached to the web, break   up the web buckles 

which would otherwise be continuous along the beam web.   These sheet waves 

deform the stiffeners torsionally and in bending tend to precipitate early failure 

due to localized stress conditions.   The presence of flanged holes, not an infre- 

quent occurrence, considerably complicates the question. 

The simplest case   --  the limiting case of a web with no compressive 

strength was treated first by Wagner.   Under these conditions the following 

formula can be developed: 

2V 
ht   * 

1 
t Sin 2 a 

V Vx 
h 

V -   — cot Of 

V Vx 
h 

V -   ^cota 

V Vd 
h tana? 
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where V = applied shear load 

h e effective web height 

t = web thickness 

d = vertical stiffener spacing 

of = angle of buckles (45°) 

°~ - diagonal tension stress 

F - axial force in the tension flange 

F = axial force in the compression flange 

F - axial force in the vertical stiffeners 

x = distance from ar   ied shear load 

These simple equations are based upon the assumption that the flanges 

are infinitely stiff in bending but carry no shear load.   Moreover, they are 

considered to be pinned to the verticals and pin connected at the fixed end of the 

beam.   Where the highest efficiency is needed these assumptions are too con- 

servative.   More refined analysis is to be found in the literature.   Generally 

speaking, the web stiffeners are so stiff that the web sheet will buckle between 

them without causing their failure.   However, it is always wise to check that 

the stabilizing posts have sufficient stiffness to ensure this.   Analytical solutions 

to this question have been made and are reasonably reliable. 

A problem, which is met in structural engineering but rarely in 

aeronautical, is that of lateral instability of beams. 

Beams without lateral support in which the bending rigidity in the plane 

of bending is large compared to the lateral bending rigidity will buckle in this 

mode when the load reaches a critical value.      As long as the load is below this 

level the beam is stable and flexes in the plane of loading.   When the critical 

load is reached the beam seeks a new equilibrium position.   It deflects laterally 

and twists. 

The critical load is dependent upon the properties of the beam cross 

section and the boundary conditions.   The appropriate theory is well established. 

Prediction is in good agreement with experiment.   Formulae have been developed 

for beams of common cross sections with simple loading and support conditions. 
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The case of a simply supported beam of narrow rectangular cross 

section is shown in Fig. 10(a).   It is loaded at the centroid by a concentrated 

load which is free to move laterally by means of a ball and socket joint. 

The critical load i« criven by 

16.94   VEI  C 
p      = 1 3  

L2 

where I      "   principle moment of inertia of the cross section 

about the lateral bending axis. 

C     -   torsional rigidity of the cross section. 

L     =   length of span. 

The mode of failure is depicted in Fig. 10(b). 

As in the case of column members, the critical load may be increased 

by providing intermediate lateral supports.   This causes a change in buckling 

mode and a corresponding increase in the buckling load. 

Figure 10(c) shows the same beam in which the lateral movement of 

the load point has been prevented by removal of the swivel joint.   This causes 

the second mode of lateral buckling to develope.   Additional intermediate 

lateral supports would require a higher mode to develope and result in a 

substantial increase in the buckling load. 

The circular cylindrical shell is one of the commonest elements in 

engineering use.   For a century engineers have experimented with and theorized 

about its behavior under various loading conditions.   The first theories for the 

buckling of thin-walled unstiffened circular cylinders were proposed by Southwell, 

Lorenz, and Timoshenko on the assumption of axisymmetric buckling.   They 

deduced that the critical stress for such a shell with clamped ends was independ- 

ent of the length of the shell and was given by the formula 

r    m  0.6 Et 
er R 

The early experiments of Robertson and those of many engineers in the 

succeeding decades showed that these predictions were not consistent with reality. 

This classic buckling load is never achieved in practice and neither is the axi- 
symmetric pattern. 
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The buckles which occur are of a diamond character.   As the pictures 

in Figs, ll(a-c) show, sometimes these buckles are located at the ends of the 

shell, sometimes in a ring around the center and in other cases they tend to 

form a spiral. 

However it is clear, from analytical studies, that the discrepancy 

between calculated and observated loads is not due to the variation in buckle 

mode.   The critical buckling load is remarkably insensitive to the buckle pattern 

used in the analysis.   In 1934 Donnell proposed a nonlinear large displacement 

theory in which imperfections were considered and in which the buckle pattern 

was a square wave.   While this was a step forwards, the problem still remained 

unsolved.   There could be little doubt that imperfections caused a lowering of 

buckling load but it was apparent that they could not be identified and a rational 

theoretical solution given. 

Almost a decade later, Karman and Tsien developed the concept further 

and studied the postbuckling behavior of such bodies.   Today, almost all work in 

the field is dominated by the Karman-Donnell approach despite the fact that it 

does not agree any better with practical experience than the classic linear theory. 

Indeed, a very pertinent question can be asked  — is the designer interested in 

the minimum postbuckling or the maximum prebuckling load.   There seems little 

doubt that it is the latter. 

The Karman-Donnell considerations are, however, such an integral 

part of current analytical thought that the tenets of this approach must be 

examined. 

initial buckling and postbuckling into the plastic range for flat plates 

in compression reflect an initially stable phenomenon with excellent correlation 

between theory and experiment.   Cylinders and highly curved plates, however, 

exhibit an unstable initial buckling process with stability being achieved in the 

postbuckling range.   It is classically contended that the stress at, and the nature 

of, the jump is greatly influenced by the method of application of the load for 

which there are two extreme possibilities: 

(a) the rigid testing machine and 

(b) the dead weight machine. 

It is postulated that the total potential energy,(i.e., the sum of the strain energy 

and the potential energy of external forces) must be the same before and after 

the jump. 
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Fig. 11(a)—Edge Mode Buckle. 

Fig. 11--Various Buckling Modes for Thin Circular Cylindrical Shells 
in Uniform Axial Compression. 
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Fig. Il(b)--Center Mode Buckle. 
(Courtesy of Dr. R. L. Carlson, Stanford University) 
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Fig. 11(c)  -Spiral Mode Buckle. 
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Symbolically U - K (j <rd€ -ere) - - K fed<r = const. 

In a rigid test machine the jump occurs at constant end shortening 

while in a dead weight machine it is at constant stress.   These considerations 

lead to the situation depicted in Figs. I2(a,b).   The analytical logic is hard to 

decry -but experiment indicates that the argument must be fai~e.   No significant 

difference in behavior can be determined no matter what mach ne stiffness is 

used. 

Researchers today, working in both the analytical and experimental 

fields are still attempting to unravel this most perplexing problem.   It has 

been found that if the depth to which buckles are developed is restricted by an 

internal mandrel a shell can be completely filled with buckles.   These buckles 

are diamond in shape and produce a very regular pattern as shown in Fig. 13. 

They occur in a random sequence as the loading cycle is carried through and 

some occur at a lower and some at a greater level of load than would be pre- 

dicted on the classic theory.   In fact, the population of buckles is described by 

a normal population law and the point of maximum buckle generation corresponds 

to the classic critical load.   This particular experiment demonstrates that a 

perfect shell restricted to operate within the confines of the small displacement 

theory will buckle at the predicted stress level. 

Perfection, of course, is not achievable either in material character- 

istics, in geometric form or in the loading system.   The question which con- 

fronts the engineer is to what extent do these various imperfections influence 

the situation either individually or in combination. 

There are several aspects which are readily demonstrated.   First, 

in buckling of shells and curved plates plastic deformation occur at the folds 

of the buckles even when the deformation is very small, say no more than 

twice the thickness of the shell.   A consequence of these very early plastic 

stresses is that on repeated testing the load to produce instability falls off. 

Second, the character of the buckles produced by nonsymmetric distributions 

of load is the same as that which results from uniform compression.   This is 

clearly e sn in the sequence of pictures, Fig. 14.   It can be experimentally 

demonstrated that the critical stress required to produce instability is the same 

whether the distribution is uniform or not. 
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(a)      RIGID   TEST     MACHINE    T.ASE 

(b, DE Ab    WEiqMT    MACVVivJE   CASE 

Fig. 12--Buckling of a Thin Circular Cylindrical Shell in Axial Compression - 
Rigid Test Machine Case Fig. 12(a) - Dead Weight Machine Case Fig. 12(b). 

33 



Fig. 13--Cylinder With Completely Developed Elastic Buckle Pattern. 
(3 in. O.D. , 9 in. length and 0.004 in. thickness, nickel) 
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So far the precise effect of variation in geometry of the shell has not 

been established.   Analytically and experimentally, however, it is possible to 

demonstrate that boundary conditions are of extreme importance to the behavior. 

Changes at this point can very easily reduce the achievable stress by 50 per 

cent. 

The behavior of anisotropic shells, such as are common in plywood, 

fiber reinforced materials and so on is not easier to deal with than the isotropic 

case already discussed.   There seems to be some doubt whether fiber direction 

influences stability loads for thin-walled bodies.   Experiments with cylinders 

made of a fiber material of close weave which had approximately the same 

character in the direction of weft and warp indicated no dependence of load on 

fiber direction.   There is no doubt, however, that in thicker walled shells such 

as those made from sandwich materials, imperfections are less important even 
when the R/t would still cause them to be classed as thin-walled.   However, 

the boundary conditions in sandwich shells are much more complex than those 

in isotropic bodies. 

The conical shell buckles in much the same manner as the cylinder. 

The pictures of Figs. 15(a,b) illustrate this.   The same difficulties are present- 

imperfection of load distribution, boundary and geometry give serious scatter. 

The behavior of cylindrical shells under the action of combined internal 

pressure and direct load is analytically ill defined.   There is little doubt that 

the presence of internal pressure does increase the load level required to 

produce instability for a realistic shell.   There seems to be little question that 

for a perfect shell there would be no influence.   Tests are characterized by 

much scatter and by a variation in buckle shape.   The shape of the buckle is 

dependent upon both the value of the compressive stress and the level of the 

internal pressure.   As the pressure increases the buckle aspect ratio, the 

ratio of wavelength to height - increases until at some critical value of 

internal pressure axisymmetric buckling occurs.   This is clearly evident in 

the sequence of shots shown in Figs. 16(a-c).   The tendency to spiral is also 

more predominant in internal pressure-compression behavior than in pure 

compression.   A spiral pattern is shown in Fig. 16(d). 

Axisymmetric buckles — ring buckles are quite clearly extensional 

deformation patterns whereas for diamond shapes inextensional deformation 

is possible.   Yoshimura has shown that a circular cylinder can deform in an 
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Fig. 15(a)--Edge Buckle Pattern 
(Courtesy of Dr. R.  L.  Carlson, Stanford University) 

Fig. 15--Typical Buckle Pattern for a Thin-Walled Conical Shell in Axial Compression. 



Fig. 15(b)--Buckle Pattern Almost Completely Developed. 
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Fig. 16(a)—Buckle Pattern With 15 psi Internal Pressure. 

Fig. 16(b)--Buckle Pattern With 54 psi Internal Pressure - 
Just Prior to Jumping Into a Single Plastic Ring. 

Fig. 16—Vaiiation in Buckle Aspect Ratio With Combined Internal 
Pressure and Axial Compression. 
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Fig. 16(c)—View of Plastic Ring Failure at 55psi 
Internal Pressure. 
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Fig. 16(d)--View of Elongated Buckle Shape in 
Spiral Mode Pattern. 

(Courtesy of L. A. Harris, et al, 
Experimental Mechanics, July 1961) 
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iu^xtensional manner and become completely filled with a pattern made up from 

flat s*ded figures.   In practice this is very difficult to achieve unless there are 

hinge line*» present in the shell.   That it can result in this case is clear from 

Figs. l7{**.b).   This inextensional deformation pattern seems to be the limiting 

case of what is likely to occur when the predominant load condition is com- 

pression. 

The buckling behavior of cylindrical shells under torsion is illustrated 

in Figs. 18(a,b) and under combined pressure and torsion loadings in Figs. 

18(c-e).   For the case of buckle depth restriction the torsion buckle pattern is 

depicted in Figs. 18(f-i).   The buckles are very different from those seen in 

compression.   In fact they are somewhat reminiscent of those for the tension 

field.   For instability under torsion, theory and experiment are much more 

in consonance than for the case of compression loading.   The correlation factor 

between calculated and observed is of the order 0.60 whereas in compression 

it is more nearly 0.20. 

The theoretical values for the critical shear stress are given by 

v.2 J l 2       2 \   3/2 
y * o    o      4-6+   /7.8+1.67'    1-f/    ™- for clamped ends. 

Et2 '   /"       2    L2  \ 3/2 

-vc = —*£—T   2-8 + /2-6 *lA; Jl -M -7T '       for simple 

(1-M   )L l/ a W 

support. 

The influence of external pressure on the stability of a circular 

cylinder is a subject which has received much attention.   The agreement 

between experiment and theory is good.   Under these conditions the critical 

loads and lobe numbers are dependent upon the ratio of the thickness to diameter 

and the specimen length.   Buckle patterns for thin-walled cylinders are shown 

in Figs. 19(a,b). 

Spheres, spherical domes and caps find much application in engineering. 

Generally speaking, there is wide disagreement between the predictions of 

theory and the experimentally observed behavior for thin-walled shells.   There 

seems little doubt that such bodies are seriously influenced by imperfections 

particularly when loaded under uniform external pressure.   In thin-walled 

42 

■..: wwatoittiiiasefl ■«*&»*» 



Fig. 17(a)--Cylinder With Evenly Spaced Hinge Lines 
Prior to Buckling. 

Fig. 17(b)--Yoshimura Pattern Fulh Developed. 

Fig. 17—Yoshimura Buckling Pattern Developed in a Circular Cylindrical Shell 
in Axial Compression. 
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Fig. 18(a)—Typical Buckle Pattern for Unpressurized Cylinder 
in Torsion.   (Courtesy of L. A. Harris, H, Suer, 
W- Skene - Experimental Mechanics, July 1961) 

Fig. 18--Torsional Buckling of Thin Circular Cylindrical Shell, 
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Fig. 18(b)—Typical Buckle Pattern for Stainless Steel Cylinder 
Under Torsional Loading.   (Courtesy R. E. Ekstrom, 
Experimental Mechanics, August 1963) 
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Fig. 18(c)--Ripples in Pressurized Specimen Prior to Buckling. 
(Courtesy L. A. Harris, et al) 



Fig. 18(d)— Typical Buckle Pattern for Pressurized Cylinder 
in Torsion.   (Courtesy L. A. Harris, et al) 
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Fig. 18(e)—Typical Buckle Pattern for Combined Torsion 
and External Pressure.   (Courtesy L. A. Harris, 
et al) 
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Fig. 19(a)— Typical Buckle Pattern for Stainless Steel Cylinder 
Under Hydrostatic Loading.   (Courtesy R. E. Ekstrom. 
et al) 

Fig. 19—Buckling of a Thin-Walled Circular Cylindrical Shell Under External Pressure. 
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«m 
Fig. 19(b)—Typical Multilobe Buckle Pattern for Hydrostatic 

Pressure.   (Courtesy L. A. Harris) 
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spherical shells loaded in this fashion the implosion is very dynamic and the 

buckle behavior which results is seen in the photograph of Fig. 20.   The 

development of the buckle motion is hard to follow even with extremely high 

framing rate cameras. 

If the buckling motion in such a shell loaded by external pressure is 

restrained by an interior mandrel buckling begins as a series of circular 

indentations which grow in size, coalesce together and in so doing form a 

system of hexagons and pentagons as seen in Figs. 21(a-c).   This buckle 

pattern is a very interesting one.  It bears a very remarkable similarity to 

the structure of a marine organism - the radiolarian.   Plastic stresses occur 

in the folds of the buckles just as in the case of cylinders but the deformation 
which can exist before they develope seems to be a good deal larger. 

It is apparent from Fig. 22 that when a thin-walled sphere is com- 

pressed by a force normal to its surface, buckling will take place in the 

neighborhood of the force.   It is not so immediately apparent that this also 

occurs when tensile loads are applied to the shell either tangential to it or 

normal to it.   The pictures, Figs.23(a-g), show spherical shells subjected to 

various loading conditions.   The buckle patterns are illustrative of a very 

important aspect in instability considerations, viz., it is not the nature of the 

applied force which is important but the nature of the reactive distribution of 

stress. 

Thus, we can find examples of instability under internal pressure. 

For example, cylindrical pressure vessels in which the end cap is not 

spherical can be unstable structures.   This is illustrated in Figs. 24(a-b). 

Naturally, all structures are not thin-walled.    Thick-walled 

cylinders, for example, tind much applioation in engineering.   The discussion 

now turns to a consideration of such vehicles; cylinders in which the radius- 

to-thickness ratio is measured in tens rather than in hundreds or thousands. 

This problem is just as difficult from an analytical point of view as many of 

the questions which have been discussed previously.   The classic buckling 

behavior is of the axisymmetric ring type.   This is, as previously remarked, 

an extensional type of deformation and there is clear evidence when thick- 

walled shells buckle in this fashion that the material yields along the fold 

lines.   According to current theory, nonsymmetric budding should require 

a higher load level to produce it.   Nevertheless, in practice this is not always 
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Fig. 20—Buckling of a Thin-Walled Spherical Shell Loaded With 
Uniform External Pressure. 
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Fig. 21(a)--Completely Developed Buckle Pattern. 

rig. 21--Buckling of a Thin-Walled Spherical Shell Loaded With Uniform External 
Pressure When Buckling Motion is Restrained by an Interior Mandrel. 
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Fig. 21(b)--Close-Up View of Buckle Pattern. 
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Fig. 21(c)—Close-Up View of Final Buckle Pattern. 
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Fig. 22—Buckling of a Thin-Walled Spherical Shell by a Force Normal to its Surface. 
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Fig. 23(a)--Buckle Pattern -Normal Tensic.i force. 

Fig. 23--Buckling Patterns for Thin Spherical Shells Subjected to Various Loading 
Conditions When Buckle Motion is Restrained by an Interior Mandrel. 
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Fig. 23(b)—Buckle Pattern -Normal Tension Force With External Pressure. 
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Fig.  I>3(c)--Buckle Pattern -Normal Tension Force After Release 
of External Pressure. 
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Fig. 23(d)-~Buckle Pattern -Surface Shear Force. 
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Fig. 23(e)--Buekle Pattern -Surface Tension Force. 
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Fig. 23a')—Buckle Pattern -Two Perpendicular Surface Tension Forces. 
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r „   2-M^-Buoklinu Pattern for a Thin-Walled Spherical Shell With a Solid Bottom 
Flg. 23(g)    Buckhng Par ^ ^^ ^ ^^ ^ ^ ^^ gpher^ Cap 
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Fig. 24(a)—Initial Buckle. 

Fig. 24—Instability Under Internal Pressure of a Nonspherical End Cap. 
(Courtesy J. Adachi and M. Benicek, Experimental Mechanics, 
July 1964) 
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Fig.  24(b)--Additional Buckling, 
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found to be the case.   Much more complex buckling patterns can and do exist. 

Some of these are shown in the photographs of Figs. 25(a-i).   Herein demon 

strated are buckle types in which the rings have become elliptical in character, 

a case in which the ellipses have become almost orthogonal rectangles together 

with examples of 2,3, and 4 lobe buckles.  There is a great similarity between 

these multilobe patterns and the Yoshimura pattern which we previously discussed. 

This is very clearly seen in the photogriphs.   In buckling of this kind the 

material   flows very much like a viscous fluid. 

The "geodetic shell" is a form which seems to have increased potential. 

So far as can be traced there is no current literature which deals with the 

stability of cylinders of this type under axial compression.   Civil engineers, 

of course, have considered reticular domes under normal force and radar 

housing under wind loadings.   Axial compression tests have shown that for 

such bodies made from relatively thick materials some very interesting 

buckle deformations are possible.  In some cases there is a distinct analogy 

between the behavior of this type of structure and thick-walled shells but 

there are also deformation patterns with no counterpart in normal shell bodies. 

In Figs. 26(a,b) the deformations are seen to be very similar to the classic 

axisymmetric ring deformation.   The behavior pattern portrayed in Figs. 26 

(c-f), is, however, very different.   Here the shell is seen to almost turn 

inside out.   The situation portrayed in Figs. 26(g-h) is again somewhat 

unusual since the failing mode is of the torsional type.   In Figs. 26(i-k) other 

unusual modes are illustrated. 

This broad but elementary survey of the instabilities of bars, plates, 

and shell bodies has served to illustrate that the field of structive instability 

is most complex and perplexing.   There is a clear need for research of 

theoretical and experimental kinds to help unravel the many questions.   There 

is need in all experimental studies for an awareness that boundary conditions 

are of paramount importance and must be carefully controlled.   The state-of- 

the-art is a clear indication that we should pay heed to the remark made by 

Dr. Johnson 

"The mathematicians are well acquainted with the 
difference between pure science, which has to do only with 
ideas, and the application of its laws to the use of life, in 
which they are constrained to submit to the imperfections 
of matter and the inf uence of accident." 
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There seems little doubt that the imperfections of matter and the 
influence of accident are of extreme importance in all phases of the very 
difficult field. 
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Fig. 25(a)—Symmetric Ring Buckles. 

Fig. 25—Symmetric and Nonsymmetric Buckle Patterns in Progressive Plastic 
Buckling of Circular Cylindrical Shells. 
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Fig. 25(b)—End View of Nonsymmetric Buckle Patterns. 
1. Two-Lobe Failure 
2. Three-Lobe Failure 
3. Four-Lobe Failure 
4. Five-Lobe Failure 
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Fig. 25(d)—Collapsed Specimen. Fig. 25(c2)— End View Showing Elliptic 
Cross Sections With Layer 
by Layer Rotations. 

Fig. 25(c)—Elliptic Cross Section Buckles. 
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Fig. 25(dl)--Collapsed Specimen. Fig. 25(d2)—End View Showing Fold 
Line With Layer by 
Layer Rotation. 

Fig. 25(d)—Two-Place Buckle Pattern. 
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Fig. 25(el)--Collapsed specimen. Fig. 25(e2)—End View Showing 
Triangular Cross 
Sections With Layer 
by Layer Rotation. 

Fig. 25(e)—Three-Lobe Buckle Pattern. 
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Fig. 25(fl)- -Collapsed Specimen. Fi£. 25(f2)—End View Showing 
Square Cross 
Sections With Layer 
by Layer Rotation. 

Fig. 25(f)—vour-Lobe Buckle Pattern 
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Fig. 25(g)—Two-Lobe Failure and Yoshimura Model. 
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Fig.   25(h)- -Three-.Looe Failure, End View and Yoshimura Model. 
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Fig. 25(i)--Four-Lobe Failure, End View 
and Yoshimura Model. 
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Fig. 25(j)--Five-Lobe Failure, End View and Yoshimura Model. 
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Fig. 26(a)—Short Specimen With Vertical 
Orientation of Diamond Patterns. 

Fig. 26(b)--Collapsed Specimens — Hat Mode. 

Fig. 26—Symmetric and Nonsymmetric Buckle Patterns in Plastic Buckling 
of Perforated Circular Cylindrical Shells. 
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Fig. 26(k)—Long Specimen With Inclined Orientation of 
Diamond Pattern -EuJer Mode. 
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